If it's not what You are looking for type in the equation solver your own equation and let us solve it.
h^2-4h-24=0
a = 1; b = -4; c = -24;
Δ = b2-4ac
Δ = -42-4·1·(-24)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{7}}{2*1}=\frac{4-4\sqrt{7}}{2} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{7}}{2*1}=\frac{4+4\sqrt{7}}{2} $
| X-0.25x=480,000 | | 2^(x^2-3x+5)=64 | | 6x+8−5x+16=32 | | 6x+8−5x+16=32. | | 3n×2=42 | | 0.98*60=x | | -6x+4=9x+7 | | y=15(1.1) | | y=30(0.95) | | 52=2x-24 | | y=5(1.08) | | 4y+4=3y-7 | | 55=4w-7 | | 5a-9=7*(a+1)+17a+4 | | c/18=4 | | b-8=216 | | y+23=78 | | (x+7)^2=-49 | | 1-3b=4-4b | | 5s-10=10+10+8s | | 10+3j=5j-10 | | 2b^2+b=528 | | 14=3.5x12 | | 32.42=6g+3.92 | | -3p=-4p-6 | | -9-6d=-6-7d | | 7/2u+5/4=-3/8u+1/4 | | 4p=7p+9 | | 6.2/(2x+1)=7/12 | | 103/x=55 | | -7x=-71 | | 7(2+2x)+(x+2)⋅6= |